CONTINUOUS PIGGERY WASTEWATER TREATMENT WITH ANAEROBIC BAFFLED REACTOR (ABR) BY BIO-ACTIVATOR EFFECTIVE MICROORGANISMS (EM4)

I Wayan Koko Suryawan, Gita Prajati, Anshah Silmi Afifah, Muhammad Rizki Apritama, Yosef Adicita

Abstract


Aim: The purpose of this study was to determine the efficiency and characteristics of pig wastewater treatment. This was to be achieved using ABR with the addition of effective microorganism4 (EM4) as a bio-activator during the startup process (R1) and without EM4 (R2). Methodology and Results: Piggery wastewater is poured into ABR with 12 hours HRT (hydraulic retention time), though it is reduced to 6 hours after the concentration is stable. The COD removal efficiency at 12 hours HRT was 60% (R1) and 51% (R2). However, the results did not change significantly, since the 6 hours HRT COD efficiency was 57.8% (R1) and 51.3% (R2). The biomass growth rate at R1 is faster than R2 with Food to Microorganism Ratio (F/M) 0.4-0.89 (R1) and 0.68-1.38 (R2) while the yield of methane gas formation was 0.25-0.28 L-CH4/g-COD. Conclusion, significance, and impact study: COD effluent is the total organic material present in the piggery wastewater effluent, which is discharged into water bodies without meeting the set quality standards. This damages the quality of water bodies. The wastewater treatment needs to be prioritized to meet quality standards of COD effluent. Also, the addition of EM4 to the activated sludge reactor improves the COD removal efficiency and biomass growth, though advanced treatment is still needed for piggery wastewater.

Keywords


ABR; Piggery wastewater; HRT; COD; Biomass growth

Full Text:

PDF

Article Metrics

Abstract views : 86| PDF views : 0

References


Anshah, A. S. and Suryawan I.W.K., Efektifitas penambahan substrat pada pengolahan biologis limbah cair tahu menggunakan sistem CSTR," ENVIROSAN: Jurnal Teknik Lingkungan, vol. 1, pp. 46-51, 2018.

Arimi, M. M., Knodel, J., Kiprop, A., Namango, S. S., Zhang, Y., Geiβen, & Sven-Uwe, 2015. Strategies for improvement of biohydrogen production from organic-rich wastewater: a review. Biomass and Bioenergy. 75: 101-118. DOI: 10.1016/j.biombioe.2015.02.011.

Bassuney, D.M., Ibrahim, W.A., & Moustafa, M.A.E. 2013. Performance of an anaerobic baffled reactor (ABR) treating high-strength food industrial wastewater with fluctuating pH. Proc. of the Intl. Conf. on Advances in Civil, Structural and Environmental Engineering—ACSEE. 98-102,

Beltran, F. J., Garcia-Araya, J. F., & Alvarez, P. M. 1999. Wine distillery wastewater degradation: improvement of aerobical biodegradation by means of an integrated chemical (ozone)-biological treatment. Journal of Agricultural and Food Chemistry. 47(9): 3919-3924. DOI: 10.1021/jf9812634.

Bernet, N., Delgenes, N., Akunna, J.C., Delgenes, J., & Moletta, R. 2000. Combined anaerobic–aerobic sbr for the treatment of piggery wastewater. Water Research. 34(2): 611–619. DOI: 10.1016/S0043-1354(99)00170-0.

Chen, C., Sun, F., Zhang, H., Wang, J., Shen, Y., & Liang, X., 2016. Evaluation of COD effect on anammox process and microbial communities in the anaerobic baffled reactor (ABR), Bioresource Technology. 216: 571–578. DOI: 10.1016/j.biortech.2016.05.115.

Chen, C., Zhang, M., X., Yu., Mei, J., Jiang, Y., Wang, Y., & Zhang, T.C. 2018. Effect of C/N ratios on nitrogen removal and microbial communities in the anaerobic baffled reactor (ABR) with an anammox-coupling-denitrification process. Water Science & Technology. 78(11): 2338-2348. DOI: 10.2166/wst.2018.516.

Cheng, N.N., & Fallowfield, H.J. 2017 Aerobic and algal treatment for piggery effluent and water reuse: design of an integrated wastewater treatment plant, Animal Production Science. 57(12): 2479-2479. DOI: 10.1071/ANv57n12Ab075.

Grover, R.; Marwaha, S.S., & Kennedy, J.F. 1999. Studies on the use of an anaerobic baffled reactor for the continuous anaerobic digestion of pulp and paper mill black liquors. Process Biochemistry. 34(6): 653-657. DOI: 10.1016/S0032-9592(98)00138-1

Hassan, S.R., Zwain, H.M., & Dahlan, I. 2013. Development of anaerobic reactor for industrial wastewater treatment: an overview, present stage and future prospects. Journal of Advanced Scientific Research. 4(1): 7-12. DOI: 10.2478/s13531-013-0107-8.

Hu, X., Xie, L., Shim, H., Zhang, S., & Yang, D. 2014. Biological nutrient removal in a full scale anoxic/anaerobic/aerobic/pre-anoxic-mbr plant for low C/N ratio municipal wastewater treatment. Chinese Journal of Chemical Engineering. 22(4): 447-454. DOI: 10.1016/S1004-9541(14)60064-1.

Intanooa, P., Chavadejb, S., Khongsumran, O. 2016. The production of biohydrogen & biomethane from cassava wastewater under mesophilic anaerobic fermentation by using upflow anaerobic sludge blanket reactors (UASB). Jurnal Teknologi. 78(5-6): 1-7. DOI: 10.11113/jt.v78.8629.

Jijaia, S., Siripatanab, C., O-Thongc, S, & Ismail, N. 2016. Kinetic models for prediction of cod effluent from upflow anaerobic sludge blanket (UASB) reactor for cannery seafood wastewater treatment. Jurnal Teknologi. 78(5-6): 93-99. DOI: 10.11113/jt.v78.8644.

Khanto A., & Banjerdkij, P, 2016. Biogas production from batch anaerobic co-digestion of night soil with food waste. EnvironmentAsia. 9(1): 77-83. DOI: 10.14456/ea.1473.9.

Kim, H.-C., Choi, W. J., Maeng, S. K., Kim, H. J.;,Kim, H. S., & Song, K. G. 2014. Ozonation of piggery wastewater for enhanced removal of contaminants by s. quadricauda and the impact on organic characteristics. Bioresource Technology. 159: 128–135. DOI: 10.1016/j.biortech.2014.02.061.

Krishna, G.V.T.G., Kumar, P., & Kumar, P. 2009. Treatment of low-strength soluble wastewater using an anaerobic baffled reactor (ABR). Journal of Environmental Management. 90(1): 166-176. DOI: 10.1016/j.jenvman.2007.08.017.

Kuba, T., van Loosdrecht, M., & Heijnen, J. 1996. Phosphorus and nitrogen removal with minimal cod requirement by integration of denitrifying dephosphatation and nitrification in a two-sludge system. Water Research. 30(7): 1702-1710. DOI: 10.1016/0043-1354(96)00050-4.

Li, J., Li, B., Zhu, G., Ren, N., Bo, L., He, J. 2007. Hydrogen production from diluted molasses by anaerobic hydrogen producing bacteria in an ABR, International Journal of Hydrogen Energy. 32(15): 3274–3283. DOI: 10.1016/j.ijhydene.2007.04.023.

Liu, C.F., Yuan, X.Z., Zeng, G.M., Li, W.W., & Li, J. 2008. Prediction of methane yield at optimum pH for anaerobic digestion of organic fraction of municipal solid waste. Bioresource Technology. 99(4):882-888. DOI: 10.1016/j.biortech.2007.01.013.

Malakahmad, A. 2014. Production of energy from palm oil mill effluent during start-up of carrier anaerobic baffled reactor (cabr) equipped with polymeric media, Journal of the Japan Institute of Energy. 93(5): 505-510. DOI: 10.3775/jie.93.505

Mariakakis, I., Bischoff, P., Krampe, J., Meyer, C., & Steinmetz, H. 2011. Effect of organic loading rate and solids retention time on microbial population during biohydrogen production by dark fermentation in large lab-scale. International Journal of Hydrogen Energy. 36(17): 10690-10700. DOI: 10.1016/j.ijhydene.2011.06.008.

Meng, J., Li, J., Li, J., Antwi, P., Deng, K., Nan, J., & Xu, P. 2018. Enhanced Nitrogen removal from piggery wastewater with high nh4+ and low cod/tn ratio in a novel upflow microaerobic biofilm reactor. Bioresource Technology. 249:935–942. DOI: 10.1016/j.biortech.2017.10.108.

Meng, J., Li, J., Li, J., Deng, K., Nan, J., & Xu, P. 2017. Effect of reflux ratio on nitrogen removal in a novel upflow microaerobic sludge reactor treating piggery wastewater with high ammonium and low COD/TN ratio: efficiency and quantitative molecular mechanism. Bioresource Technology. 243: 922–931. DOI: 10.1016/j.biortech.2017.07.052

Nasr, F.A., Gad, M.A., Al-Herrawy, A.Z., & Abdelfadil, S.A. 2019. Decentralized biological compact unit for the removal of parasitic helminth ova during sewage treatment. EnvironmentAsia. 12(1): 178-186. DOI: 10.14456/ea.2019.20.

Ni, S.Q., Ni, J.Y., Hu, D.L. & Sung, S.W. 2012. Effect of organic matter on the performance of granular anammox process. Bioresource Technology.. 110: 701-705. DOI: 10.1016/j.biortech.2012.01.066.

Pereira, E.L., Campos, C.M.M., & Motteran, F. 2013. Physico-chemical study of pH, alkalinity and total acidity in a system composed of anaerobic baffled reactor (ABR) in series with upflow anaerobic sludge blanket reactor (UASB) in the Treatment of Pig Farming Wastewater. Acta Scientiarum Technology. 35(3): 477-483. DOI: 10.4025/actascitechnol.v35i3.14069.

Pillay, S., Foxon, K., Rodda, N., Smith, M.T., & Buckley, C.A. 2006. Microbiological studies of an anaerobic baffled reactor, South African National Research Foundation: University of KwaZulu-Natal,

Sasse, L. 1998. Decentralised wastewater treatment in developing countries, Germany: Bremen Overseas Research & Development Association (BORDA),

Suarna, I.W., & Suryani, N.N. 2015. Peluang dan tantangan pengembangan ternak babi bali di kabupaten gianyar Provinsi Bali. Majalah Ilmiah Peternakan. 18(2): 61-64, DOI: 10.24843/MIP.2015.v18.i02.p06

Suryawan, I.W.K., Helmy, Q., Notodarmojo, S. 2018. Textile wastewater treatment: colour and COD removal of reactive black-5 by ozonation. IOP Conf. Series: Earth and Environmental Science. 106: 1-6. DOI: 10.1088/1755-1315/106/1/012102.

Suryawan, I.W.K., Afifah, A.S., & Prajati, G, 2019a. Degradasi bahan organik dan pertumbuhan biomassa konsorsium pada air limbah olahan babi dengan lumpur aktif anoksik. Jurnal Teknik Kimia dan Lingkungan. 3(1): 20-26.

Suryawan, I.W.K., Afifah, A.S., & Prajati, G, 2019b. Pretreatment of endek wastewater with ozone/hydrogen peroxide to improve biodegradability. AIP Conference Proceedings, vol. 2114, no. 1, p. 050011, 2019.

Suryawan, I.W.K., Siregar M.J., Prajati G., and Afifah A.S., "Integrated ozone and anoxic-aerobic activated sludge reactor for endek (Balinese textile) wastewater treatment," Journal of Ecological Engineering, vol. 20, no. 7, 2019.

Xie, S., Lawlor, P.G., Frost, J.P., Wu, G., & Zhan, X. 2012. Hydrolysis and acidification of grass silage in leaching bed reactors. Bioresource Technology. 114: 406-413. DOI: 10.1016/j.biortech.2012.03.008.

Yang, L., Huang, Y., Zhao, M., Huang, Z., Miao, H., Xu, Z., & Ruan, W, 2015. Enhancing biogas generation performance from food wastes by high-solids thermophilic anaerobic digestion: effect of pH Adjustment. International Biodeterioration & Biodegradation. 105: 153–159. DOI: 10.1016/j.ibiod.2015.09.005.

Ye, Z., Zhang, B., Liu, Y., Wang, Z., & Tian, C. 2014. Continuous electricity generation with piggery wastewater treatment using an anaerobic baffled stacking microbial fuel cell. Desalination and Water Treatment. 55(8): 2079–2087. DOI: 10.1080/19443994.2014.930702.

Zainuddina, N., Maarifb, M., Rianic, E. & & Noor, S., 2019. Water Pollution from the activity of large-ruminant animal quarantine installation (AQI) in its receiving water body. Tropical Animal Science Journal. 42(1): 68-75. DOI: 10.5398/tasj.2019.42.1.68




DOI: http://dx.doi.org/10.25105/urbanenvirotech.v3i1.5095

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

width="60"    width="60"    width="60"    width="60"   

width="60"        width="60"    width="60"

width="60"    width="60"        

Copyright of Indonesian Journal of Urban and Environmental Technology

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

     Creative Commons License